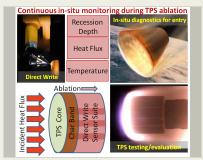
Recession-Tolerant Sensors for Thermal Protection Systems, Phase II

Completed Technology Project (2014 - 2017)


Project Introduction

The Phase II project will develop a suite of diagnostic sensors using Direct Write technology to measure temperature, surface recession depth, and heat flux of an ablative thermal protection system (TPS) in real time, which can be integrated to support TPS evaluation and in-situ diagnostics during planetary entry. Standalone heat flux sensors and those fabricated by direct deposition will be developed and demonstrated for integration within TPS materials for use in extreme re-entry conditions. The intent is to use the sensors for real time temperature/heat flux measurements to validate new materials and systems, as well as for flight structures where space and accessibility are limited. Methods for incorporating thermocouples, heat flux and recession sensors using Direct Write technology will be developed to provide accurate sensing capabilities. Notably, recession tolerant heat flux sensors will be designed and fabricated to demonstrate feasibility of this new heat flux sensor technology and subsequent instrumentation capability for TPS.

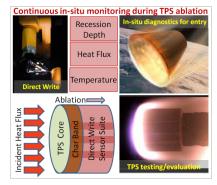
Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
MesoScribe	Lead	Industry	Setauket,
Technologies, Inc.	Organization		New York
• Ames Research Center(ARC)	Supporting	NASA	Moffett Field,
	Organization	Center	California

Recession-Tolerant Sensors for Thermal Protection Systems, Phase II

Table of Contents

Project Introduction	
Primary U.S. Work Locations	
and Key Partners	
Images	2
Organizational Responsibility	2
Project Management	
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3


Recession-Tolerant Sensors for Thermal Protection Systems, Phase II

Completed Technology Project (2014 - 2017)

Primary U.S. Work Locations		
California	New York	

Images

Briefing Chart Image

Recession-Tolerant Sensors for Thermal Protection Systems, Phase II (https://techport.nasa.gov/imag e/129621)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

MesoScribe Technologies, Inc.

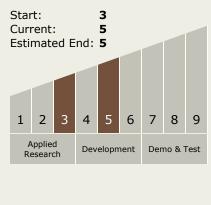
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Rob Greenlaw

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Recession-Tolerant Sensors for Thermal Protection Systems, Phase II

Completed Technology Project (2014 - 2017)

Technology Areas

Primary:

- TX09 Entry, Descent, and Landing
 - └ TX09.4 Vehicle Systems
 - ☐ TX09.4.6

 Instrumentation and
 Health Monitoring for
 FDI

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

